Question:
The Pendulum ( used to tell the sex of my unborn baby.)?
The prego one
2008-03-17 23:16:45 UTC
My pendulum goes back and forth and in circles over my belly at the same time, with out pausing in between. what could this mean? The circles and back and forth movements are big. I am 3 months pregnant. Why doesn't it just make one type of movement instead of two?
Five answers:
Magus (brown wizard)
2008-03-18 01:47:15 UTC
I also suspect twins with different sexes, like what answerer "argh" mentioned. But why rely on a pendulum? If you really want to find out the sex of your baby, an ultrasound is more reliable.
anonymous
2008-03-18 04:50:50 UTC
Hello



First you have to work out the language that you & your pendulum have!



Ask it question such as which way will you swing for Yes & No etc, a Boy or Girl so on.



Once you know which way it will move then you can place it over your belly & ask.



Pam
brandais
2016-10-22 02:44:11 UTC
unfortunally you may't. the babys heart cost being a boy or a woman can flexuate plenty. the purely way you may tell is by ability of united statesbetween 16-24 weeks. also the former tale of wearing slightly one severe or low boy/female or more beneficial/a lot less morning ailment isn't 100% acucrate both,as I stated purely an united statesa. the right time can make sure the great sex.
argh
2008-03-17 23:24:14 UTC
maybe you're having twins- a boy and a girl
anonymous
2008-03-18 19:22:55 UTC
A pendulum is an object that is attached to a pivot which the pendulum can swing freely. This object is subject to a restoring motion that will accelerate it toward an equilibrium position. When the pendulum is displaced from its place of rest, the restoring force will cause the pendulum to oscillate about the equilibrium position.



A basic example is the simple gravity pendulum or bob pendulum. This is a weight (or bob) on the end of a massless string, which, when initially displaced, will swing back and forth under the influence of gravity over its central (lowest) point.



The regular motion of pendulum can be used for time keeping, and pendulum are used to regulate pendulum clocks.



As recorded in the 4th century Chinese Book of Later Han, one of the earliest uses of the pendulum was in the seismometer device of the Han Dynasty (202 BC - 220 AD) scientist and inventor Zhang Heng (78-139).[1] Its function was to sway and activate a series of levers after being disturbed by the tremor of an earthquake far away.[2] After this was triggered, a small ball would fall out of the urn-shaped device into a metal toad's mouth below, signifying the cardinal direction of where the earthquake was located (and where government aid and assistance should be swiftly sent).[2] An Egyptian scholar, Ibn Yunus, is known to have described an early pendulum in the 10th century.[3][4]



Among his scientific studies, Galileo Galilei performed a number of observations of all the properties of pendula. His interest in the pendulum may have been sparked by looking at the swinging motion of a chandelier in the Pisa cathedral. He began serious studies of the pendulum around 1602. Galileo noticed that period of the pendulum is independent of the bob mass or the amplitude of the swing. He also found a direct relationship between the square of the period and the length of the arm. The isochronism of the pendulum suggested a practical application for use as a metronome to aid musical students, and possibly for use in a clock.[5]





Perhaps based upon the ideas of Galileo, in 1656 the Dutch scientist Christiaan Huygens patented a mechanical clock that employed a pendulum to regulate the movement.[6] This approach proved much more accurate than previous time pieces, such as the hourglass. Following an illness, in 1665 Huygens made a curious observation about pendulum clocks. Two such clocks had been placed on his fireplace mantel, and he noted that they had acquired an opposing motion. That is, they were beating in unison but in the opposite direction—an anti-phase motion. Regardless of how the two clocks were adjusted, he found that they would eventually return to this state, thus making the first recorded observation of a coupled oscillator.[7]



During his Académie des Sciences expedition to Cayenne, French Guiana in 1671, Jean Richer demonstrated that the periodicity of a pendulum was slower at Cayenne than at Paris. From this he deduced that the force of gravity was lower at Cayenne.[8] Huygens reasoned that the centripetal force of the Earth's rotation modified the weight of the pendulum bob based on the latitude of the observer.[9]



In his 1673 opus Horologium Oscillatorium sive de motu pendulorum,[10] Christian Huygens published his theory of the pendulum. He demonstrated that for an object to descend down a curve under gravity in the same time interval, regardless of the starting point, it must follow a cycloid (rather than the circular arc of a pendulum). This confirmed the earlier observation by Marin Mersenne that the period of a pendulum does vary with amplitude, and that Galileo's observation was accurate only for small swings in the neighborhood of the center line.[11]



The English scientist Robert Hooke devised the conical pendulum, consisting of a pendulum that is free to swing in both directions. By analyzing the circular movements of the pendulum bob, he used it to analyze the orbital motions of the planets. Hooke would suggest to Isaac Newton in 1679 that the components of orbital motion consisted of inertial motion along a tangent direction plus an attractive motion in the radial direction. Isaac Newton was able to translate this idea into a mathematical form that described the movements of the planets with a central force that obeyed an inverse square law—Newton's law of universal gravitation.[12][13] Robert Hooke was also responsible for suggesting (as early as 1666) that the pendulum could be used to measure the force of gravity.



In 1851, Jean-Bernard-Leon Foucault suspended a pendulum (later named the Foucault pendulum) from the dome of the Panthéon in Paris. It was the third Foucault pendulum he constructed, the first one was constructed in his basement and the second one was a demonstration model with a length of 11 meters. The mass of the pendulum in Pantheon was 28 kg and the length of the arm was 67 m. The Foucault pendulum was a worldwide sensation: it was the first demonstration of the Earth's rotation with a purely indoors experiment. Once the Paris pendulum was set in motion the plane of motion was observed to precess about 270° clockwise per day. A pendulum located at either of the poles will precess 360° relative to the ground it is suspended above. There is a mathematical relation between the latitude where a Foucault pendulum is deployed and its precession; the lengthening of the period of the precession is inversely proportional to the sine of the latitude.



[14]



The National Institute of Standards and Technology based the U.S. national time standard on the Riefler Clock from 1904 until 1929. This pendulum clock maintained an accuracy of a few hundredths of a second per day. It was briefly replaced by the double-pendulum W. H. Shortt Clock before the NIST switched to an electronic time-keeping system.[15] clock





[edit] Basic principles

Main article: Pendulum (mathematics)



[edit] Simple pendulum



Amplification of period factor of a pendulum for growing angular amplitude. For little oscilations factor is approximately 1 but it tends to infinity for angles near π (180º).If and only if the pendulum swings through a small angle (in the range where the function sin(θ) can be approximated as θ)[16] the motion may be approximated as simple harmonic motion. The period of a simple pendulum is significantly affected only by its length and the acceleration of gravity. The period of motion is independent of the mass of the bob or the angle at which the arm hangs at the moment of release. The period of the pendulum is the time taken for two swings (left to right and back again) of the pendulum. The formula for the period, T, is





where is the length of the pendulum measured from the pivot point to the bob's center of gravity and g is the gravitational acceleration.[17]



For larger amplitudes, the velocity of the pendulum can be derived for any point in its arc by observing that the total energy of the system is conserved. (Although, in a practical sense, the energy can slowly decline due to friction at the hinge and atmospheric drag.) Thus the sum of the potential energy of bob at some height above the equilibrium position, plus the kinetic energy of the moving bob at that point, is equal to the total energy. However, the total energy is also equal to maximum potential energy when the bob is stationary at its peak height (at angle θmax). By this means it is possible to compute the velocity of the bob at each point along its arc, which in turn can be used to derive an exact period.[18] The resulting period is given by an infinite series:



[17]

Note that for small values of θmax, the value of the sine terms become negligible and the period can be approximated by a harmonic oscillator as shown above.





[edit] Physical pendulum

The simple pendulum assumes that the rod is massless and that the bob is small, so has negligible angular momentum in itself. A physical pendulum (or compound pendulum) has significant size and mass, and hence a significant moment of inertia.



A physical pendulum behaves like a simple pendulum but the expression for the period is modified.





where:



I is the moment of inertia of the pendulum about the pivot point

L is the distance from the center of mass to the pivot point

m is the mass of the pendulum



[edit] Double pendulum

Main article: Double pendulum

A double pendulum consists of one pendulum attached to the free end of another pendulum. The behaviour of this system is significantly more complicated than that of a single simple or physical pendulum. [19] For small angles of displacement this system is approximately linear and can be modelled by the theory of normal modes. As the angles increase, however, the double pendulum can exhibit chaotic motion that is sensitive to the initial conditions.



A special case of the compound double pendulum, known as Rott's Pendulum, is that where the pivots of the two pendula are horizontal when the system is in static equilibrium, and the periods of the pendula are a factor of two apart. In this case, the coupling between the pendula is to first order non-linear which — for small angles — leads to periodic behaviour with a period much larger than that of either pendulum. [20]





[edit] Use for measurement

The most widespread application is for timekeeping. A pendulum whose time period is 2 seconds is called the seconds pendulum since most clock escapements move the seconds hands on each swing. Clocks that keep time with the use of pendula lose accuracy due to friction. Pendulums are also widely used as metronomes for pianists.



The presence of g as a variable in the periodicity equation for a pendulum means that the frequency is different at various locations on Earth. So, for example, when an accurate pendulum clock in Glasgow, Scotland, (g = 9.815 63 m/s2) is transported to Cairo, Egypt, (g = 9.793 17 m/s2) the pendulum must be shortened b


This content was originally posted on Y! Answers, a Q&A website that shut down in 2021.
Loading...